Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix
نویسندگان
چکیده
Parallel factor (PARAFAC) analysis enables a quantitative analysis of excitation-emission matrix (EEM). The impact of a spectral variability stemmed from a diverse dataset on the representativeness of the PARAFAC model needs to be examined. In this study, samples from a river, effluent of a wastewater treatment plant, and algae secretion were collected and subjected to PARAFAC analysis. PARAFAC models of global dataset and individual datasets were compared. It was found that the peak shift derived from source diversity undermined the accuracy of the global model. The results imply that building a universal PARAFAC model that can be widely available for fitting new EEMs would be quite difficult, but fitting EEMs to existing PARAFAC model that belong to a similar environment would be more realistic. The accuracy of online monitoring strategy that monitors the fluorescence intensities at the peaks of PARAFAC components was examined by correlating the EEM data with the maximum fluorescence (Fmax) modeled by PARAFAC. For the individual datasets, remarkable correlations were obtained around the peak positions. However, an analysis of cocktail datasets implies that the involvement of foreign components that are spectrally similar to local components would undermine the online monitoring strategy.
منابع مشابه
Organic matter from biofilter nitrification by high performance size exclusion chromatography and fluorescence excitation-emission matrix
A combination of high performance size exclusion chromatography with organic carbon detector and ultraviolet detector coupled with peak-fitting technique and fluorescence excitation-emission matrix spectrometry applied fluorescence regional integration method was conducted to determine the characteristics of organic matter during nitrification. The batch scale of bionet nitrification without or...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملA novel approach combining self-organizing map and parallel factor analysis for monitoring water quality of watersheds under non-point source pollution
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators...
متن کاملCharacterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis.
Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (C1), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015